請輸入產(chǎn)品關(guān)鍵字:
暫無信息 |
分子雜交技術(shù)(一)
點(diǎn)擊次數(shù):1152 發(fā)布時(shí)間:2010-3-1
一、概述
前面已經(jīng)介紹了核酸分子單鏈之間有互補(bǔ)的堿基順序,通過堿基對之間非共價(jià)鍵(主要是氫鍵)的形成即出現(xiàn)穩(wěn)定的雙鏈區(qū),這是核酸分子雜交的基礎(chǔ)。雜交分子的形成并不要求兩條單鏈的堿基順序*互補(bǔ),所以不同來源的核酸單鏈只要彼此之間有一定程度的互補(bǔ)順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交可在DNA與DNA、RNA與RNA或RNA與DNA的二條單鏈之間進(jìn)行。由于DNA一般都以雙鏈形式存在,因此在進(jìn)行分子雜交時(shí),應(yīng)先將雙鏈DNA分子解聚成為單鏈,這一過程稱為變性,一般通過加熱或提高pH值來實(shí)現(xiàn)。使單鏈聚合雙鏈的過程稱為退火或復(fù)性。用分子雜交進(jìn)行定性或定量分析的zui有效方法是將一種核酸單鏈用同位素或非同位素標(biāo)記成為探針,再與另一種核酸單鏈進(jìn)行分子雜交。
核酸雜交技術(shù)基本上是Hall等1961年的工作開始的,探針與靶序列在溶液中雜交,通過平衡密度梯度離心分離雜交體。該法很慢、費(fèi)力且不,但它開拓了核酸雜交技術(shù)的研究。Bolton等1962年設(shè)計(jì)了*種簡單的固相雜交方法,稱為DNA-瓊脂技術(shù)。變性DNA固定在瓊脂中,DNA不能復(fù)性,但能與其它互補(bǔ)核酸序列雜交。典型的反應(yīng)是用放射性標(biāo)記的短DAN或RNA分子與膠中DNA雜交過夜,然后將膠置于柱中進(jìn)行漂洗,去除游離探針,在高溫、低鹽條件下將結(jié)合的探針洗脫,洗脫液的放射性與結(jié)合的探針量呈正比。該法尤其適用于過量探針的飽和雜交實(shí)驗(yàn)。60年代末,Britten等設(shè)計(jì)了另一種分析細(xì)胞基因組的方法。該法是研究液相中DNA的復(fù)性以比較不同來源核酸的復(fù)雜度,典型的方法是:從不同生物體(細(xì)菌、酵母、魚和哺乳動(dòng)物等)內(nèi)分離DNA,用水壓器剪切成長約450核苷酸(nt)的片段。剪切的DNA液(含0.12mol/L磷酸鹽緩沖液或0.18mol/l Na+),經(jīng)煮沸使dsDNA熱變性成ssDNA。然后冷至約60℃,在此溫度孵育過程中,測定溶液一定時(shí)間內(nèi)的UV260nm的吸光度(減色效應(yīng))來監(jiān)測互補(bǔ)鏈的復(fù)性程度。通常該實(shí)驗(yàn)可比較不同來源生物DNA的復(fù)性速率,并可建立序列復(fù)雜度與動(dòng)力學(xué)復(fù)雜度間的關(guān)系。
60年代中期Nygaard 等的研究為應(yīng)用標(biāo)記DNA或RNA探針檢測固定在硝酸纖維素(NC)膜上的DNA序列奠定了基礎(chǔ)。如Brown等應(yīng)用這一技術(shù)評估了爪蟾rRNA基因的拷貝數(shù)。RNA在代謝過程中被3H尿嘧啶標(biāo)記,并在過量的情況下與膜上固定的基因組DNA雜交,繼而用RNase處理,消化非特異性結(jié)合的RNA。漂洗后計(jì)數(shù)以測定雜交探針的量。通過計(jì)算與已知量DNA雜交的RNA量即可評估rRNA基因數(shù)。由于當(dāng)時(shí)缺乏特異探針,這種方法不能用于研究其它特異基因的表達(dá),這些早期過量探針膜雜交試驗(yàn)實(shí)際上是現(xiàn)代膜雜交實(shí)驗(yàn)的基礎(chǔ)。
進(jìn)入70年代早期,許多重要的發(fā)展促進(jìn)了核酸雜交技術(shù)的進(jìn)展。例如,對特異基因轉(zhuǎn)錄產(chǎn)物的分析和對動(dòng)力學(xué)雜交實(shí)驗(yàn)又有興趣。固相化的Poly U –Sepharose和寡(dT)-纖維素使人們能從總RNA中分離Poly A+ RNA。用mRNA的經(jīng)純化技術(shù)可從網(wǎng)織紅細(xì)胞總RNA中制備α-和β-珠蛋白mRNA混合物。這些珠蛋白mRNA被用于合成特異的探針以分析珠蛋白基因的表達(dá)。由于制備cDNA探針很繁瑣,所獲得cDNA的長度和純度也不穩(wěn)定。所以尋求新的探針來源是使分子雜交技術(shù)進(jìn)一步推廣的基礎(chǔ)。
70年代末期到80年代早期,分子生物學(xué)技術(shù)有了突破性進(jìn)展,限制性內(nèi)切酶的發(fā)展和應(yīng)用使分子克隆成為可能。各種載體系統(tǒng)的誕生,尤其是質(zhì)粒和噬菌體DAN載體的構(gòu)建,使特異性DNA探針的來源變得十分豐富。人們可以從基因組DNA文庫和cDNA文庫中獲得特定基因克隆,只需培養(yǎng)細(xì)菌,便可提取大量的探針DNA。迄今為止,已克隆和定性了許多特異DNA探針。
由于固相化學(xué)技術(shù)和核酸自動(dòng)合成儀的誕生,現(xiàn)在可常規(guī)制備18~100個(gè)堿基的寡核苷酸探針。應(yīng)用限制酶和Southern印跡技術(shù),用數(shù)微克DNA就可分析特異基因。特異DNA或RNA序列的量和大小均可用Southern印跡和Northern印跡來測定,與以前的技術(shù)相比,大大提高了雜交水平和可信度。
盡管取得了上述重大進(jìn)展,但分子雜交技術(shù)在臨床實(shí)用中仍存在不少問題,必須提高檢測單拷貝基因的敏感性,用非放射性物質(zhì)代替放射性同位素標(biāo)記探針以及簡化實(shí)驗(yàn)操作和縮短雜交時(shí)間,這樣,就需要在以下三方面著手研究:*,完善非放射性標(biāo)記探針;第二,靶序列和探針的擴(kuò)增以及信號的放大;第三,發(fā)展簡單的雜交方式,只有這樣,才能使DNA探針實(shí)驗(yàn)做到簡便、快速、低廉和安全。
二、探針-靶反應(yīng)
從化學(xué)和生物學(xué)意義上理解,探針是一種分子,它帶有供反應(yīng)后檢測的合適標(biāo)記物,并僅與特異靶分子反應(yīng)??乖?抗體、外源凝集素-碳水化合物、親和素-生物素、受體-配基(ligand)以及互補(bǔ)核酸間的雜交均屬于探針-靶分子反應(yīng)。蛋白質(zhì)探針(如抗體)與特異靶分子是通過混合力(疏水、離子和氫鍵)的作用在少數(shù)特異位點(diǎn)上的結(jié)合,而核酸探針與互補(bǔ)鏈的反應(yīng)則是根據(jù)雜交體的長短不同,通過氫鍵在幾十、幾百甚至上千個(gè)位點(diǎn)上的結(jié)合。因?yàn)橛袡C(jī)溶液可降低雜交體的穩(wěn)定性,所以,疏水反應(yīng)對互補(bǔ)核酸鏈的結(jié)合也有一定的作用,但對其特異性影響甚微。
核苷酸經(jīng)某一原子、功能基團(tuán)或長側(cè)鏈修飾后仍可能進(jìn)行堿基配對,這取決于修飾的部位和修飾的性質(zhì)。這一特性有助于理解非放射性核酸探針標(biāo)記物的設(shè)計(jì)和125I與DNA探針的化學(xué)結(jié)合。能與核酸結(jié)合的單一原子有銀、溴和碘等,這些元素可與嘧啶(胸腺嘧啶除外)環(huán)的C-5位或嘌呤環(huán)的C-8位反應(yīng)而不影響氫鍵的形成。溴亦可與胸腺嘧啶的C-6位結(jié)合。而胞嘧啶的C-4和腺嘌呤的N-6就不能被修飾,否則會(huì)影響堿基配對,盡管C的N-4位和A的N-6位參與了氫鍵形成,但它們也是標(biāo)記位點(diǎn)。這是因?yàn)闃?biāo)記的探針每1kb只摻入10~30個(gè)修飾堿基,即僅4%~12%的單個(gè)堿基被修飾的類似物取代了。盡管摻入位點(diǎn)處的堿基配對較弱或不存在,但對整個(gè)雜交分子的穩(wěn)定性影響很小。防止氫鍵破壞的一種方法就是修飾探針,即探針克隆入M13載體中,只修飾載體區(qū)而不修飾插入片段。當(dāng)用放射性同位素32P和35S標(biāo)記核酸時(shí),由于同位素是摻入核酸骨架的磷酸二脂鍵中,因此堿基未發(fā)生任何修飾。在5’端的磷酸基團(tuán)上可進(jìn)行化學(xué)修飾,這是標(biāo)記寡核苷酸探針的有效方法。因?yàn)檫@種方法是在一個(gè)探針分子上標(biāo)記一個(gè)檢測的基團(tuán),所以,對長的克隆探針不適用。
此外,還可利用修飾的堿基來增加雜交的穩(wěn)定性和特異性。2-氫基腺嘌呤可替代寡核苷酸探針中的腺嘌呤通過形成3個(gè)氫鍵以增加雜交體的穩(wěn)定性。另外,在G-C豐富的RNA探針中,可用次黃嘌呤代替鳥嘌呤以獲得特異的雜交。因?yàn)榇吸S嘌呤和鳥嘌呤間只形成2個(gè)氫鍵,有效地降低了雜交體的Tm值,這樣,Tm值與雜交溫度更接近,雜交的嚴(yán)格性就增加了,因此,也就增加了特異性。
很顯然,結(jié)合位點(diǎn)的不同和可檢測基團(tuán)與檢測系統(tǒng)的不同,可派生出很多核酸探針標(biāo)記方法。這是由核酸的化學(xué)結(jié)構(gòu)和性質(zhì)所決定的。只有在對核酸分子的探針-靶反應(yīng)的化學(xué)本質(zhì)有了深入了解之后,才能更好地理解后面的章 節(jié) 內(nèi)容。
三、核酸探針的種類
基因探針根據(jù)標(biāo)記方法不同可粗分為放射性探針和非放射性探針兩大類,根據(jù)探針的核酸性質(zhì)不同又可分為DNA探針,RNA探針,cDNA探針,cRNA探針及寡核苷酸探針等幾類,DNA探針還有單鏈和雙鏈之分。下面分別介紹這幾種探針。
?。ㄒ唬〥NA探針
DNA探針是zui常用的核酸探針,指長度在幾百堿基對以上的雙鏈DNA或單鏈DNA探針?,F(xiàn)已獲得DNA探針數(shù)量很多,有細(xì)菌、病毒、原蟲、真菌、動(dòng)物和人類細(xì)胞DNA探針。這類探針多為某一基因的全部或部分序列,或某一非編碼序列。這些DNA片段須是特異的,如細(xì)菌的毒力因子基因探針和人類Alu探針。這些DNA探針的獲得有賴于分子克隆技術(shù)的發(fā)展和應(yīng)用。以細(xì)菌為例,目前分子雜交技術(shù)用于細(xì)菌的分類和菌種鑒定比之G+C百分比值要準(zhǔn)確的多,是細(xì)菌分類學(xué)的一個(gè)發(fā)展方向。加之分子雜交技術(shù)的高敏感性,分子雜交在臨床微生物診斷上具有廣闊的前景。細(xì)菌的基因組大小約5×106bp,約含3000個(gè)基因。各種細(xì)菌之間絕大部分DNA是相同的,要獲得某細(xì)菌特異的核酸探針,通常要采取建立細(xì)菌基因組DNA文庫的辦法,即將細(xì)菌DNA切成小片段后分別克隆得到包含基因組的全信息的克隆庫。然后用多種其它菌種的DNA作探針來篩選,產(chǎn)生雜交信號的克隆被剔除,zui后剩下的不與任何其它細(xì)菌雜交的克隆則可能含有該細(xì)菌特異性DNA片段。將此重組質(zhì)粒標(biāo)記后作探針進(jìn)一步鑒定,亦可經(jīng)DNA序列分析鑒定其基因來源和功能。因此要得到一種特異性DNA探針,常常是比較繁瑣的。探針DNA克隆的篩選也可采用血清學(xué)方法,所不同的是所建DNA文庫為可表達(dá)性,克隆菌落或噬斑經(jīng)裂解后釋放出表達(dá)抗原,然后用來源細(xì)菌的多克隆抗血清篩選陽性克隆,所得到多個(gè)陽性克隆再經(jīng)其它細(xì)菌的抗血清篩選,zui后只與本細(xì)菌抗血清反應(yīng)的表達(dá)克隆即含有此細(xì)菌的特異性基因片段,它所編碼的蛋白是該菌種所*的。用這種表達(dá)文庫篩選得到的顯然只是特定基因探針。
對于基因探針的克隆尚有更快捷的途徑。這也是許多重要蛋白質(zhì)的編碼基因的克隆方法。該方法的*步是分離純化蛋白質(zhì),然后測定該蛋白的氨基或羥基末端的部分氨基酸序列,然后根據(jù)這一序列合成一套寡核苷酸探針。用此探針在DNA文庫中篩選,陽性克隆即是目標(biāo)蛋白的編碼基因。值得一提的是真核細(xì)胞和原核細(xì)胞DNA組織有所不同。真核基因中含有非編碼的內(nèi)含子序列,而原核則沒有。因此,真核基因組DNA探針用于檢測基因表達(dá)時(shí)雜交效率要明顯低于cDNA探針。
DNA探針(包括cDNA探針)的主要優(yōu)點(diǎn)有下面三點(diǎn):①這類探針多克隆在質(zhì)粒載體中,可以無限繁殖,取之不盡,制備方法簡便。②DNA探針不易降解(相對RNA而言),一般能有效抑制DNA酶活性。③DNA探針的標(biāo)記方法較成熟,有多種方法可供選擇,如缺口平移,隨機(jī)引物法,PCR標(biāo)記法等,能用于同位素和非同位素標(biāo)記。
?。ǘヽDNA探針
cDNA(complementary DNA)是指互補(bǔ)于mRNA的DNA分子。cDNA是由RNA經(jīng)一種稱為逆轉(zhuǎn)錄酶(reverse transcriptase)的DNA聚合酶催化產(chǎn)生的,這種逆錄酶是Temin等在70年代初研究致癌RNA病毒時(shí)發(fā)現(xiàn)的。該酶以RNA為模板,根據(jù)堿基配對原則,按照RNA的核苷酸順序合成DNA(其中U與A配對)。這一途徑與一般遺傳信息流的方向相反,故稱反向轉(zhuǎn)錄或逆轉(zhuǎn)錄。攜帶逆轉(zhuǎn)錄酶的病毒侵入宿主細(xì)胞后,病毒RNA在逆轉(zhuǎn)錄酶的催化下轉(zhuǎn)化成雙鏈cDNA,并進(jìn)而整合人宿主細(xì)胞染色體DNA分子,隨宿主細(xì)胞DNA復(fù)制同時(shí)復(fù)制。這種整合的病毒基因組稱為原病毒。在靜止?fàn)顟B(tài)下,可被復(fù)制多代,但不被表達(dá),故無毒性。一旦因某種因素刺激而被活化,則該病毒大量復(fù)制,如其帶有癌基因,還可能誘發(fā)細(xì)胞癌變,后來發(fā)現(xiàn)逆轉(zhuǎn)錄酶不僅普遍存在于RNA病毒中,而且哺乳動(dòng)物的胚胎細(xì)胞和正在分裂的淋巴細(xì)胞也含有逆轉(zhuǎn)錄酶。逆轉(zhuǎn)錄酶的作用是以dNTP為底物,RNA為模板,tRNA(主要是色氨酸t(yī)RNA)為引物,在Trna3’-OH末端上,5’-3’方向,合成與RNA互補(bǔ)的DNA單鏈,稱為互補(bǔ)DNA(cDNA),單鏈cDNA與模板RNA形成RNA-DNA雜交體。隨后在逆轉(zhuǎn)錄酶的RNase H活性作用下,將RNA鏈水解成小片段。cDNA單鏈的3’末端回折形成一個(gè)小引物末端,逆轉(zhuǎn)錄酶又以*條cDNA鏈為模板再合成第二第cDNA鏈,至此,完成逆轉(zhuǎn)錄全過程,合成雙鏈cDNA。
逆轉(zhuǎn)錄現(xiàn)在已成為一項(xiàng)重要的分子生物學(xué)技術(shù),廣泛用于基因的克隆和表達(dá)。從逆轉(zhuǎn)錄病毒中提取的逆轉(zhuǎn)錄酶已商品化,zui常用的有AMV逆轉(zhuǎn)錄酶。利用真核Mrna3’末端存在一段聚腺苷酸尾,可以合成一段寡聚胸苷酸(oligo(dT))用作引物,在逆轉(zhuǎn)錄酶催化下合成互補(bǔ)于mRNA的cRNA鏈,然后再用RNase H將mRNA消化掉,再加入大腸桿菌的DNA聚合酶I催化合成另一條DNA鏈,即完成了從mRNA到雙鏈DNA的逆轉(zhuǎn)錄過程。
所得到的雙鏈cDNA分子經(jīng)S1核酸酶切平兩端后接一個(gè)有限制酶切點(diǎn)的接頭(linker),再經(jīng)特定的限制酶消化產(chǎn)生粘性末端,即可與含互補(bǔ)末端的載體進(jìn)行連接。常用的克隆載體是λ噬菌體DNA,如λgt,EMBL和Charon系列等。用這類載體可以得到包含104以上的轉(zhuǎn)化子的文庫,再經(jīng)前面介紹的篩選方法篩選特定基因克隆。用這種技術(shù)獲得的DNA探針不含有內(nèi)含子序列。因此尤其適用于基因表達(dá)的檢測。
?。ㄈ㏑NA探針
RNA探針是一類很有前途的核酸探針,由于RNA是單鏈分子,所以它與靶序列的雜交反應(yīng)效率*。早期采用的RNA探針是細(xì)胞mRNA探針和病毒RNA探針,這些RNA是在細(xì)胞基因轉(zhuǎn)錄或病毒復(fù)制過程中得到標(biāo)記的,標(biāo)記效率往往不高,且受到多種因素的制約。這類RNA探針主要用于研究目的,而不是用于檢測。例如,在篩選逆轉(zhuǎn)錄病毒人類免疫缺陷病毒(HIV)的基因組DNA克隆時(shí),因無DNA探針可利用,就利用HIV的全套標(biāo)記mRNA作為探針,成功地篩選到多株HIV基因組DNA克隆。又如進(jìn)行中的轉(zhuǎn)錄分析(nuclear run on transcrip-tion assay)時(shí),在體外將細(xì)胞核分離出來,然后在α-32P-ATP的存在下進(jìn)行轉(zhuǎn)錄,所合成mR-NA均摻入同位素而得到標(biāo)記,此混合mRNA與固定于硝酸纖維素濾膜上的某一特定的基因的DNA進(jìn)行雜交,便可反映出該基因的轉(zhuǎn)錄狀態(tài),這是一種反向探針實(shí)驗(yàn)技術(shù)。
近幾年體外轉(zhuǎn)錄技術(shù)不斷完善,已相繼建立了單向和雙向體外轉(zhuǎn)錄系統(tǒng)。該系統(tǒng)主要基于一類新型載體pSP和pGEM,這類載體在多克隆位點(diǎn)兩側(cè)分別帶有SP6啟動(dòng)子和T7啟動(dòng)子,在SP6RNA聚合酶或T7RNA聚合酶作用下可以進(jìn)行RNA轉(zhuǎn)錄,如果在多克隆位點(diǎn)接頭中插入了外源DNA片段,則可以此DNA兩條鏈中的一條為模板轉(zhuǎn)錄生成RNA。這種體外轉(zhuǎn)錄反應(yīng)效率很高,在1h內(nèi)可合成近10μg的RNA產(chǎn)生,只要在底物中加入適量的放射性或生物素標(biāo)記的NTP,則所合成的RNA可得到標(biāo)記。該方法能有效地控制探針的長度并可提高標(biāo)記物的利用率。
值得一提的是,通過改變外源基因的插入方向或選用不同的RNA聚合酶,可以控制RNA的轉(zhuǎn)錄方向,即以哪條DNA鏈以模板轉(zhuǎn)錄RNA。這種可以得到同義RNA探針(與mRNA同序列)和反義RNA探針(與mRNA互補(bǔ)),反義RNA又稱cRNA,除可用于反義核酸研究外,還可用于檢測mRNA的表達(dá)水平。在這種情況下,因?yàn)樘结樅桶行蛄芯鶠閱捂湥噪s交的效率要比DNA-DNA雜交高幾個(gè)數(shù)量級。RNA探針除可用于檢測DNA和mRNA外,還有一個(gè)重要用途,在研究基因表達(dá)時(shí),常常需要觀察該基因的轉(zhuǎn)錄狀況。在原核表達(dá)系統(tǒng)中外源基因不僅進(jìn)行正向轉(zhuǎn)錄,有時(shí)還存在反向轉(zhuǎn)錄(即生成反義RNA),這種現(xiàn)象往往是外源基因表達(dá)不高的重要原因。另外,在真核系統(tǒng),某些基因也存在反向轉(zhuǎn)錄,產(chǎn)生反義RNA,參與自身表達(dá)的調(diào)控。在這些情況下,要準(zhǔn)確測定正向和反向轉(zhuǎn)錄水平就不能用雙鏈DNA探針,而只能用RNA探針或單鏈DNA探針。
綜上所述,RNA探針和cRNA探針具有DNA探針?biāo)荒鼙葦M的高雜交效率,但RNA探針也存在易于降解和標(biāo)記方法復(fù)雜等缺點(diǎn)。
?。ㄋ模┕押怂崽结?/p>
前述三種探針均是可克隆的,一般情況下,只要有克隆的探針,就不用寡核苷酸探針。在DNA序列未知而必須首*行克隆以便繪制酶譜和測序時(shí),也常應(yīng)用克隆??寺√结樢话爿^寡核苷酸探針特異性強(qiáng),復(fù)雜度也高,從統(tǒng)計(jì)學(xué)角度而言,較長的序列隨機(jī)碰撞互補(bǔ)序列的機(jī)會(huì)較短序列少,克隆探針的另一優(yōu)點(diǎn)是,可獲得較強(qiáng)的雜交信號,因?yàn)榭寺√结樰^寡核苷酸探針摻入的可檢測標(biāo)記基因更多。但是,較長的探針對于靶序列變異的識別能力又有所降低。對于僅是單個(gè)堿基或少數(shù)堿基不同的兩序列,克隆探針不能區(qū)分,往往雜交信號相當(dāng)。這既是其優(yōu)點(diǎn),又是其缺點(diǎn)。優(yōu)點(diǎn)是當(dāng)用于檢測病原微生物時(shí),不會(huì)因病毒或細(xì)菌DNA的少許變異而漏診,缺點(diǎn)則是不能用于點(diǎn)突變的檢測。這種情況下,通常要采用化學(xué)合成的寡核苷酸探針。
合成的寡核苷酸探針具有一些*的優(yōu)點(diǎn):①由于鏈短,其序列復(fù)雜度低,分子量小,所以和等量靶位點(diǎn)*雜交的時(shí)間比克隆探針短,如20nt的寡核苷酸探針在濃度為100ng/ml,靶序列為1~100pg、1kb片段或3×10-18~3×10-16mol/L時(shí),達(dá)到zui大程度的雜交只需10min,而用2kb的克隆探針在同樣條件下達(dá)到*雜交則需16h。②寡核苷酸探針可識別靶序列內(nèi)1個(gè)堿基的變化,因?yàn)槎烫结樦袎A基的錯(cuò)配能大幅度地降低雜交體的Tm值。③一次可大量合成寡核苷酸探針(1~10mg),使得這種探針價(jià)格低廉,與克隆探針一樣,寡核苷酸探針能夠用酶學(xué)或化學(xué)方法修飾以進(jìn)行非放射性標(biāo)記物的標(biāo)記。盡管克隆探針較特異,但通過細(xì)心篩選序列和/或選擇相對長的序列(>30nt)亦可設(shè)計(jì)出非常特異的寡核苷酸探針。zui常用的寡核苷酸探針有18~40個(gè)堿基,目前的合成儀可有效地合成至少50個(gè)堿基的探針。下面是篩選寡核苷酸針的一些原則。
?、匍L18~50nt,較長探針雜交時(shí)間較長,合成量低;較短探針特異性會(huì)差些。
?、趬A基成分:G+C含量為40%~60%,超出此范圍則會(huì)增加非特異雜交。
?、厶结樂肿觾?nèi)不應(yīng)存在互補(bǔ)區(qū),否則會(huì)出現(xiàn)抑制探針雜交的“發(fā)夾”狀結(jié)構(gòu)。
?、鼙苊鈫我粔A基的重復(fù)出現(xiàn)(不能多于4個(gè)),如-CCCCC-。
?、菀坏┻x定某一序更符合上述標(biāo)準(zhǔn),將序列與核酸庫中核酸序列比較,探針序列應(yīng)與含靶序列的核酸雜交,而與非靶區(qū)域的同源性不能超過70%或有連續(xù)8個(gè)或更多的堿基的同源,否則,該探針不能用。
按上述原則選出的探針會(huì)增加成功的機(jī)會(huì),選定后進(jìn)行合成與標(biāo)記,并摸索合適的雜交條件。方法是制備幾張點(diǎn)有特異靶DNA和不相關(guān)DNA的膜,各膜分別在不同溫度下與探針雜交,特異靶DNA雜交信號強(qiáng)而非特異DNA不產(chǎn)生任何雜交反應(yīng)的就是zui適雜交溫度。在進(jìn)行點(diǎn)突變檢測雜交的反應(yīng)時(shí),洗膜條件和溫度物選擇往往更為重要。所選漂洗條件必需使野生型靶DNA與探針產(chǎn)生強(qiáng)的雜交信號而突變型靶DNA則不產(chǎn)生雜交信號,這可以通過逐漸提高洗膜溫度來完成。
寡核苷酸探針還有一個(gè)重要用途。在用于檢測單個(gè)堿基差異時(shí)尚可采用一種稱為寡核苷酸限制(oligonucleotide restriction)的技術(shù)。該技術(shù)只有在突變點(diǎn)位于某一限制性內(nèi)切酶識別位點(diǎn)時(shí)才有效。例如,鐮刀狀紅細(xì)胞貧血是因β珠蛋白基因的第6個(gè)寡碼子由GAG變成GTG,從而導(dǎo)致所編碼氨基酸由酪氨酸變成纈氨酸。突變的β-珠蛋白功能異常,稱作S珠蛋白,而野生型稱為A珠蛋白,其基因型分別為βS和βA。恰好突變點(diǎn)A→T位于Del I的識別序列CT-NAG之內(nèi),這就為設(shè)計(jì)寡核苷酸限制實(shí)驗(yàn)創(chuàng)造了條件。方法是合成一個(gè)長40個(gè)堿基的寡核苷酸探針,其5’末端距突變堿基有11個(gè)堿基,該探針與βA基因的非編碼鏈互補(bǔ)。將此探針的5’末端標(biāo)記上32P。雜交方法采用液相雜交法,即在液相中將靶DNA變性解鏈,然后與探針退火,產(chǎn)生雜交體。如靶DNA為βA型,則兩條鏈*互補(bǔ),并產(chǎn)生Dde I的酶切位點(diǎn);如待檢DNA為βS型,則所形成的雜交體中兩條鏈在突變堿基處不配對,從而不能被Del I所識別。用Del I消化雜交DNA,顯然βA會(huì)被切開而βS不被切開。βADNA雜交體被切開后,5’端探針序列因只有8個(gè)堿基,與雜交鏈結(jié)合不緊而解離,從而產(chǎn)生游離的5’端標(biāo)記8核苷酸單鏈。不被切開的βS雜交體尚可被另一個(gè)限制酶Hinf I消化,該酶的識別位點(diǎn)緊靠Del I 識別位點(diǎn)上游。βS雜交DNA經(jīng)Hinf I消化后,將釋出探針DNA的5’末端3核苷酸小片段。βADNA雜交體因已無Hinf I識別序列,故而不能被Hinf I消化。這樣βA和βSDNA經(jīng)此寡核苷酸探針雜交和Del I及Hinf I消化后,分別產(chǎn)生游離的8核苷酸(8nt)和3核苷酸(3nt) 片段,它們可以經(jīng)電泳分離后進(jìn)行放射自顯影而獲證實(shí)。藉此策略,可輕易將各種β珠蛋白突變型鑒別開,如純合野生型AA結(jié)果為僅有8nt片段,純合突變型SS則僅可檢出3nt片段,而雜合子AS型則兩種片段均存在。